import os import json import socket import platform import numpy as np import pandas as pd import streamlit as st import sys from streamlit_autorefresh import st_autorefresh st.set_page_config( page_title="Баскетбол", page_icon="🏀", layout="wide", initial_sidebar_state="expanded", menu_items={"About": "версия 1.8 22.01.2025"}, ) REMOVE_PADDING_FROM_SIDES = """ """ st.markdown(REMOVE_PADDING_FROM_SIDES, unsafe_allow_html=True) st_autorefresh() # Функции для стилизации def highlight_max(data): # Преобразуем данные к числовому типу, заменяя некорректные значения на NaN numeric_data = pd.to_numeric(data, errors="coerce") max_value = numeric_data.max() if pd.notna(numeric_data.max()) else None return [ "background-color: green" if pd.notna(v) and v == max_value and v > 0 else "" for v in numeric_data ] def color_win(s): return [ ( "background-color: ForestGreen" if v == True else "background-color: #FF4B4B" if v == False else None ) for v in s ] def highlight_grey(s): return ["background-color: grey"] * len(s) if s.foul == 5 else [""] * len(s) def highlight_foul(s): return [ ( "background-color: orange" if v == 4 else "background-color: red" if v == 5 else "" ) for v in s ] def load_json_data(filepath): """ Загружает данные из JSON файла и кэширует их. Возвращает None, если файл не удается прочитать. """ try: with open(filepath, "r", encoding="utf-8") as file: return json.load(file) except (json.JSONDecodeError, FileNotFoundError): return None def show_df(container, data, *, base_row_h=38, min_rows=12, max_h=1200, **kwargs): # вычисляем высоту try: n = len(data) except Exception: n = 0 h = base_row_h * max(n, min_rows) # зажимаем в допустимый диапазон if not isinstance(h, int): h = int(h) h = max(0, min(h, max_h)) # если высота 0 или данных мало — не передаём height вовсе if h <= 0 or n == 0: container.dataframe(data, **kwargs) else: container.dataframe(data, height=h, **kwargs) # Функция для обработки данных одной команды def process_team_data(team_json, columns_to_include): team_data = pd.json_normalize(team_json) # Оставляем только нужные колонки team_data = team_data[:12][columns_to_include] # Обработка height и weight for column in ["height", "weight"]: if column in team_data.columns: team_data[column] = team_data[column].apply( lambda value: "" if value == 0 else value ) return team_data def process_player_data(team_json, player_index): team_data = pd.json_normalize(team_json) player_data = team_data.iloc[player_index] season_total = { "name": "Season Total", "game_count": str(player_data["TGameCount"]), "start_count": str(player_data["TStartCount"]), "pts": str(player_data["TPoints"]), "pt-2": str(player_data["TShots2"]), "pt-3": str(player_data["TShots3"]), "pt-1": str(player_data["TShots1"]), "fg": str(player_data["TShots23"]), "ast": str(player_data["TAssist"]), "stl": str(player_data["TSteal"]), "blk": str(player_data["TBlocks"]), "dreb": str(player_data["TDefRebound"]), "oreb": str(player_data["TOffRebound"]), "reb": str(player_data["TRebound"]), # "to": str(player_data["TTurnover"]), # "foul": str(player_data["TFoul"]), "fouled": str(player_data["TOpponentFoul"]), "dunk": str(player_data["TDunk"]), "time": str(player_data["TPlayedTime"]), } season_avg = { "name": "Season Average", "game_count": "", "start_count": "", "pts": str(player_data["AvgPoints"]), "pt-2": str(player_data["Shot2Percent"]), "pt-3": str(player_data["Shot3Percent"]), "pt-1": str(player_data["Shot1Percent"]), "fg": str(player_data["Shot23Percent"]), "ast": str(player_data["AvgAssist"]), "stl": str(player_data["AvgSteal"]), "blk": str(player_data["AvgBlocks"]), "dreb": str(player_data["AvgDefRebound"]), "oreb": str(player_data["AvgOffRebound"]), "reb": str(player_data["AvgRebound"]), # "to": str(player_data["AvgTurnover"]), # "foul": str(player_data["AvgFoul"]), "fouled": str(player_data["AvgOpponentFoul"]), "dunk": str(player_data["AvgDunk"]), "time": str(player_data["AvgPlayedTime"]), } career_total = { "name": "Career Total", "game_count": str(player_data["CareerTGameCount"]), "start_count": str(player_data["CareerTStartCount"]), "pts": str(player_data["CareerTPoints"]), "pt-2": str(player_data["CareerTShots2"]), "pt-3": str(player_data["CareerTShots3"]), "pt-1": str(player_data["CareerTShots1"]), "fg": str(player_data["CareerTShots23"]), "ast": str(player_data["CareerTAssist"]), "stl": str(player_data["CareerTSteal"]), "blk": str(player_data["CareerTBlocks"]), "dreb": str(player_data["CareerTDefRebound"]), "oreb": str(player_data["CareerTOffRebound"]), "reb": str(player_data["CareerTRebound"]), # "to": str(player_data["CareerTTurnover"]), # "foul": str(player_data["CareerTFoul"]), "fouled": str(player_data["CareerTOpponentFoul"]), "dunk": str(player_data["CareerTDunk"]), "time": str(player_data["CareerTPlayedTime"]), } return [season_total, season_avg, career_total], player_data config = { "flag": st.column_config.ImageColumn("flag"), "roleShort": st.column_config.TextColumn("R", width=27), "num": st.column_config.TextColumn("#", width=27), "NameGFX": st.column_config.TextColumn(width=170), "isOn": st.column_config.TextColumn("🏀", width=27), "pts": st.column_config.NumberColumn("PTS", width=27), "pt-2": st.column_config.TextColumn("2-PT", width=45), "pt-3": st.column_config.TextColumn("3-PT", width=45), "pt-1": st.column_config.TextColumn("FT", width=45), "fg": st.column_config.TextColumn("FG", width=45), "ast": st.column_config.NumberColumn("AS", width=27), "stl": st.column_config.NumberColumn("ST", width=27), "blk": st.column_config.NumberColumn("BL", width=27), "blkVic": st.column_config.NumberColumn("BV", width=27), "dreb": st.column_config.NumberColumn("DR", width=27), "oreb": st.column_config.NumberColumn("OR", width=27), "reb": st.column_config.NumberColumn("R", width=27), "to": st.column_config.NumberColumn("TO", width=27), "foul": st.column_config.NumberColumn("F", width=27), "fouled": st.column_config.NumberColumn("Fed", width=27), "plusMinus": st.column_config.NumberColumn("+/-", width=27), "dunk": st.column_config.NumberColumn("DUNK", width=27), "kpi": st.column_config.NumberColumn("KPI", width=27), "time": st.column_config.TextColumn("TIME"), "game_count": st.column_config.TextColumn("G", width=27), "start_count": st.column_config.TextColumn("S", width=27), "q_pts": st.column_config.TextColumn("PTS", width=27), "q_ast": st.column_config.TextColumn("AS", width=27), "q_stl": st.column_config.TextColumn("ST", width=27), "q_blk": st.column_config.TextColumn("BL", width=27), "q_reb": st.column_config.TextColumn("R", width=27), "q_rnk": st.column_config.TextColumn("KPI", width=27), "q_f": st.column_config.TextColumn("F", width=27), "q_f_on": st.column_config.TextColumn("Fed", width=27), "q_to": st.column_config.TextColumn("TO", width=27), "q_time": st.column_config.TextColumn("TIME"), "q_pt2": st.column_config.TextColumn("2-PT", width=45), "q_pt3": st.column_config.TextColumn("3-PT", width=45), "q_pt23": st.column_config.TextColumn("FG", width=45), "q_ft": st.column_config.TextColumn("FT", width=45), } config_season = { "flag": st.column_config.ImageColumn("flag"), "roleShort": st.column_config.TextColumn("R", width=27), "num": st.column_config.TextColumn("#", width=27), "NameGFX": st.column_config.TextColumn(width=170), "isOn": st.column_config.TextColumn("🏀", width=27), "pts": st.column_config.TextColumn("PTS", width=40), "pt-2": st.column_config.TextColumn("2-PT", width=60), "pt-3": st.column_config.TextColumn("3-PT", width=60), "pt-1": st.column_config.TextColumn("FT", width=60), "fg": st.column_config.TextColumn("FG", width=60), "ast": st.column_config.TextColumn("AS", width=40), "stl": st.column_config.TextColumn("ST", width=40), "blk": st.column_config.TextColumn("BL", width=40), "blkVic": st.column_config.TextColumn("BV", width=40), "dreb": st.column_config.TextColumn("DR", width=40), "oreb": st.column_config.TextColumn("OR", width=40), "reb": st.column_config.TextColumn("R", width=40), "to": st.column_config.TextColumn("TO", width=40), "foul": st.column_config.TextColumn("F", width=40), "fouled": st.column_config.TextColumn("Fed", width=40), "plusMinus": st.column_config.TextColumn("+/-", width=40), "dunk": st.column_config.TextColumn("DUNK", width=40), "kpi": st.column_config.TextColumn("KPI", width=40), "time": st.column_config.TextColumn("TIME"), "game_count": st.column_config.TextColumn("G", width=40), "start_count": st.column_config.TextColumn("S", width=40), } if "player1" not in st.session_state: st.session_state.player1 = None if "player2" not in st.session_state: st.session_state.player2 = None # myhost = platform.node() # FOLDER_JSON = "" # if platform == "win32": # FOLDER_JSON = "JSON" # else: # FOLDER_JSON = "static" myhost = platform.node() if sys.platform.startswith("win"): # было: if platform == "win32": FOLDER_JSON = "JSON" else: FOLDER_JSON = "static" def get_ip_address(): try: # Попытка получить IP-адрес с использованием внешнего сервиса # Может потребоваться подключение к интернету s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) ip_address = s.getsockname()[0] except socket.error: # Если не удалось получить IP-адрес через внешний сервис, # используем метод для локального получения IP ip_address = socket.gethostbyname(socket.gethostname()) return ip_address def load_data_from_json2(filepath): directory = FOLDER_JSON os.makedirs(directory, exist_ok=True) filepath = os.path.join(directory, f"{filepath}.json") ip = get_ip_address() host = ip_check.get(ip, {}).get("host") # st.write(filepath) key = filepath.replace(f"static/{host}_", "").replace(".json","") # Создаём уникальный ключ на основе значения filepath # st.write(key) temp = load_json_data(filepath) # st.write(temp) if key not in st.session_state: st.session_state[key] = temp else: st.session_state[key] = temp def load_data_from_json(filepath): directory = FOLDER_JSON os.makedirs(directory, exist_ok=True) filepath_full = os.path.join(directory, f"{filepath}.json") ip = get_ip_address() host = ip_check.get(ip, {}).get("host") or "" # безопаснее # Ключ в session_state: <имя файла> без префикса _ # Пример: static/abc_game_online.json -> game_online base = os.path.basename(filepath_full).replace(".json","") key = base.replace(f"{host}_", "", 1) temp = load_json_data(filepath_full) # None, если нет файла/парсинга st.session_state[key] = temp # ключ гарантированно создаётся try: with open("match_id.json", "r", encoding="utf-8") as f: ip_check = json.load(f) except (FileNotFoundError, json.JSONDecodeError): ip_check = {} ip_address = get_ip_address() prefix = ip_check.get(ip_address, {}).get("host") # load_data_from_json(f"{prefix}_game_online") # cached_game_online = st.session_state.game_online # # for i in cached_game_online["result"]: # # print(i) # # print(cached_game_online["result"]["plays"]) # load_data_from_json(f"{prefix}_team1") # cached_team1 = st.session_state.team1 # load_data_from_json(f"{prefix}_team2") # cached_team2 = st.session_state.team2 # load_data_from_json(f"{prefix}_referee") # cached_referee = st.session_state.referee # try: # load_data_from_json(f'{prefix}_standings_{cached_game_online["result"]["league"]["tag"]}') # except TypeError: # pass # if cached_game_online: # cached_standings = st.session_state[ # f'standings_{cached_game_online["result"]["league"]["tag"]}' # ] # else: # cached_standings = None # load_data_from_json(f"{prefix}_scores_quarter") # cached_scores_quarter = st.session_state.scores_quarter # load_data_from_json(f"{prefix}_play_by_play") # cached_play_by_play = st.session_state.play_by_play # load_data_from_json(f"{prefix}_team_stats") # cached_team_stats = st.session_state.team_stats # load_data_from_json(f"{prefix}_scores") # cached_scores = st.session_state.scores # load_data_from_json(f"{prefix}_live_status") # cached_live_status = st.session_state.live_status # load_data_from_json(f"{prefix}_schedule") # cached_schedule = st.session_state.schedule load_data_from_json(f"{prefix}_game_online") cached_game_online = st.session_state.get("game_online") load_data_from_json(f"{prefix}_team1") cached_team1 = st.session_state.get("team1") load_data_from_json(f"{prefix}_team2") cached_team2 = st.session_state.get("team2") load_data_from_json(f"{prefix}_referee") cached_referee = st.session_state.get("referee") # standings — может не быть тега/файла league_tag = None if isinstance(cached_game_online, dict): league_tag = ((cached_game_online.get("result") or {}).get("league") or {}).get("tag") if league_tag: load_data_from_json(f"{prefix}_standings_{league_tag}") cached_standings = st.session_state.get(f"standings_{league_tag}") if league_tag else None load_data_from_json(f"{prefix}_scores_quarter") cached_scores_quarter = st.session_state.get("scores_quarter") load_data_from_json(f"{prefix}_play_by_play") cached_play_by_play = st.session_state.get("play_by_play") load_data_from_json(f"{prefix}_team_stats") cached_team_stats = st.session_state.get("team_stats") load_data_from_json(f"{prefix}_scores") cached_scores = st.session_state.get("scores") or [] # важно! load_data_from_json(f"{prefix}_live_status") cached_live_status = st.session_state.get("live_status") load_data_from_json(f"{prefix}_schedule") cached_schedule = st.session_state.get("schedule") # st.session_state def ensure_state(key: str, default=None): # Инициализирует ключ один раз и возвращает значение return st.session_state.setdefault(key, default) # period_max = 0 # if cached_play_by_play and cached_game_online and cached_game_online["result"]["plays"]: # df_data_pbp = pd.DataFrame(cached_play_by_play) # if "play" in df_data_pbp: # period_max = df_data_pbp.iloc[0]["period"] # count_quarter = [ # f"Четверть {i}" if i < 5 else f"Овертайм {i-4}" # for i in range(1, int(period_max) + 1) # ] # for i in range(period_max): # i += 1 # key_team1 = f"team1_{i}" # key_team2 = f"team2_{i}" # load_data_from_json(key_team1) # load_data_from_json(key_team2) # # if key_quarter_team1: # # key_quarter_team1 = st.session_state[key_quarter_team1] # # if key_quarter_team2: # # key_quarter_team2 = st.session_state[key_quarter_team2] # key_quarter_team1 = st.session_state.get(key_team1) # None, если ключа нет # key_quarter_team2 = st.session_state.get(key_team2) period_max = 0 if isinstance(cached_play_by_play, list) and isinstance(cached_game_online, dict): plays = (cached_game_online.get("result") or {}).get("plays") or [] if plays: df_data_pbp = pd.DataFrame(cached_play_by_play) if not df_data_pbp.empty and "period" in df_data_pbp.columns: period_max = int(df_data_pbp.iloc[0]["period"]) count_quarter = [ f"Четверть {i}" if i < 5 else f"Овертайм {i-4}" for i in range(1, period_max + 1) ] for i in range(1, period_max + 1): key_team1 = f"team1_{i}" key_team2 = f"team2_{i}" load_data_from_json(key_team1) load_data_from_json(key_team2) _q1 = st.session_state.get(key_team1) # может быть None — это ок _q2 = st.session_state.get(key_team2) timeout1 = [] timeout2 = [] # if cached_game_online: # for event in cached_game_online["result"]["plays"]: # if event["play"] == 23: # if event["startNum"] == 1: # timeout1.append(event) # elif event["startNum"] == 2: # timeout2.append(event) # # with st.expander(""): # col1, col4, col2, col5, col3 = st.columns([1, 5, 3, 5, 1]) # col1.image(cached_game_online["result"]["team1"]["logo"], width=100) # team1_name = cached_game_online["result"]["team1"]["name"] # team2_name = cached_game_online["result"]["team2"]["name"] # col2.markdown( # f"

{team1_name} — {team2_name}

", # unsafe_allow_html=True, # ) # col3.image(cached_game_online["result"]["team2"]["logo"], width=100) # col4_1, col4_2, col4_3 = col4.columns((1, 1, 1)) # delta_color_1 = ( # "off" # if int(cached_team_stats[0]["val1"]) == int(cached_team_stats[0]["val2"]) # else "normal" # ) # col4_1.metric( # "Points", # cached_team_stats[0]["val1"], # int(cached_team_stats[0]["val1"]) - int(cached_team_stats[0]["val2"]), # delta_color_1, # ) # col4_3.metric("TimeOuts", len(timeout1)) # col5_1, col5_2, col5_3 = col5.columns((1, 1, 1)) # col5_3.metric( # "Points", # cached_team_stats[0]["val2"], # int(cached_team_stats[0]["val2"]) - int(cached_team_stats[0]["val1"]), # delta_color_1, # ) # col5_1.metric("TimeOuts", len(timeout2)) # # print(cached_live_status) # if cached_live_status is not None: # col4_2.metric("Fouls", cached_live_status[0]["foulsA"]) # col5_2.metric("Fouls", cached_live_status[0]["foulsB"]) if isinstance(cached_game_online, dict): result = cached_game_online.get("result") or {} plays = result.get("plays") or [] timeout1, timeout2 = [], [] for event in plays: if isinstance(event, dict) and event.get("play") == 23: if event.get("startNum") == 1: timeout1.append(event) elif event.get("startNum") == 2: timeout2.append(event) col1, col4, col2, col5, col3 = st.columns([1, 5, 3, 5, 1]) t1 = (result.get("team1") or {}) t2 = (result.get("team2") or {}) if t1.get("logo"): col1.image(t1["logo"], width=100) team1_name = t1.get("name") or "" team2_name = t2.get("name") or "" if team1_name or team2_name: col2.markdown( f"

{team1_name} — {team2_name}

", unsafe_allow_html=True, ) if t2.get("logo"): col3.image(t2["logo"], width=100) col4_1, col4_2, col4_3 = col4.columns((1, 1, 1)) col5_1, col5_2, col5_3 = col5.columns((1, 1, 1)) # Points метрики безопасно val1 = val2 = None if isinstance(cached_team_stats, list) and len(cached_team_stats) > 0: v1 = cached_team_stats[0].get("val1") v2 = cached_team_stats[0].get("val2") if v1 is not None and v2 is not None: val1, val2 = int(v1), int(v2) delta_color_1 = "off" if val1 == val2 else "normal" col4_1.metric("Points", v1, val1 - val2, delta_color_1) col5_3.metric("Points", v2, val2 - val1, delta_color_1) col4_3.metric("TimeOuts", len(timeout1)) col5_1.metric("TimeOuts", len(timeout2)) if isinstance(cached_live_status, list) and cached_live_status: foulsA = (cached_live_status[0] or {}).get("foulsA") foulsB = (cached_live_status[0] or {}).get("foulsB") if foulsA is not None: col4_2.metric("Fouls", foulsA) if foulsB is not None: col5_2.metric("Fouls", foulsB) # if cached_game_online and cached_game_online["result"]["plays"]: # col_1_col = [f"col_1_{i}" for i in range(1, int(period_max) + 1)] # col_2_col = [f"col_2_{i}" for i in range(1, int(period_max) + 1)] # count_q = 0 # cached_scores = cached_scores or [] # score_by_quarter_1 = [x["score1"] for x in cached_scores if x["score1"] != ""] # score_by_quarter_2 = [x["score2"] for x in cached_scores if x["score2"] != ""] # if score_by_quarter_1 != []: # col_1_col = col4.columns([1 for i in range(1, len(score_by_quarter_1) + 1)]) # col_2_col = col5.columns([1 for i in range(1, len(score_by_quarter_2) + 1)]) # # print(score_by_quarter_1) # for q1, q2, col1, col2 in zip( # score_by_quarter_1, score_by_quarter_2, col_1_col, col_2_col # ): # count_q += 1 # name_q = "" # if count_q > 4: # name_q = f"OT{count_q-4}" # else: # name_q = f"Q{count_q}" # # print(q1, q2) # delta_color = "off" if int(q1) == int(q2) else "normal" # col1.metric(name_q, q1, int(q1) - int(q2), delta_color, border=True) # col2.metric(name_q, q2, int(q2) - int(q1), delta_color, border=True) if isinstance(cached_game_online, dict) and ((cached_game_online.get("result") or {}).get("plays") or []): col_1_col = [f"col_1_{i}" for i in range(1, period_max + 1)] col_2_col = [f"col_2_{i}" for i in range(1, period_max + 1)] count_q = 0 score_by_quarter_1 = [x.get("score1") for x in cached_scores if isinstance(x, dict) and x.get("score1") not in ("", None)] score_by_quarter_2 = [x.get("score2") for x in cached_scores if isinstance(x, dict) and x.get("score2") not in ("", None)] if score_by_quarter_1: col_1_col = col4.columns([1 for _ in range(len(score_by_quarter_1))]) col_2_col = col5.columns([1 for _ in range(len(score_by_quarter_2))]) for q1, q2, col1_i, col2_i in zip(score_by_quarter_1, score_by_quarter_2, col_1_col, col_2_col): count_q += 1 name_q = f"OT{count_q-4}" if count_q > 4 else f"Q{count_q}" try: delta_color = "off" if int(q1) == int(q2) else "normal" col1_i.metric(name_q, q1, int(q1) - int(q2), delta_color, border=True) col2_i.metric(name_q, q2, int(q2) - int(q1), delta_color, border=True) except (ValueError, TypeError): # если кривые данные в JSON, просто пропустим pass ( tab_temp_1, tab_temp_2, tab_temp_3, tab_temp_4, tab_temp_5, tab_temp_6, tab_pbp, tab_temp_7, tab_temp_8, tab_schedule, ) = st.tabs( [ "Игроки", "Команды", "Судьи", "Турнирная таблица", "Статистика четвертей", "Ход игры", "События игры", "Статистика по четвертям", "Milestones", "Прошедшие/будущие матчи", ] ) def check_milestone(value, milestone_type, name, num, where): milestone_checks = { "PTS": "point", "AST": "assist", "BLK": "block", "REB": "rebound", "DREB": "defensive rebound", "OREB": "offensive rebound", "STL": "steal", "GAMES": "game", } if milestone_type == "GAMES": list_data = [*range(50, 5100, 50)] if int(value) % 100 in [49, 99]: diff = [l - int(value) for l in list_data] positive_numbers = [num for num in diff if num > -1] count = 0 for i in diff: count += 1 if i == min(positive_numbers): break full_word = [ word for w, word in milestone_checks.items() if w.lower() == milestone_type.lower() ][0] # print(positive_numbers) if min(positive_numbers) != 0: word = full_word if min(positive_numbers) == 1 else f"{full_word}s" if where == "season": where = "in this season" elif where == "league": where = "in career VTB" string_value = f"{name} needs {min(positive_numbers)} {word} to reach {list_data[count-1]} {full_word}s {where}" else: string_value = "" return { "NameGFX": f"{name} ({num})", "type": milestone_type.upper(), "value": value, "string_value": string_value, } else: list_data = [*range(100, 5100, 100)] if (int(value) % 100) >= 90 or (int(value) % 1000) in list_data: diff = [l - int(value) for l in list_data] positive_numbers = [num for num in diff if num > -1] count = 0 for i in diff: count += 1 if i == min(positive_numbers): break # print(positive_numbers) full_word = [ word for w, word in milestone_checks.items() if w.lower() == milestone_type.lower() ][0] # print(positive_numbers) if min(positive_numbers) != 0: word = full_word if min(positive_numbers) == 1 else f"{full_word}s" if where == "season": where = "in this season" elif where == "league": where = "in career VTB" string_value = f"{name} needs {min(positive_numbers)} {word} to reach {list_data[count-1]} {full_word}s {where}" else: string_value = "" return { "NameGFX": f"{name} ({num})", "type": milestone_type.upper(), "value": value, "string_value": string_value, } return None def milestones(data): new_data_season = [] new_data_career = [] for d in data: if d["startRole"] == "Player": milestone_checks = { "PTS": d["TPoints"], "AST": d["TAssist"], "BLK": d["TBlocks"], "REB": d["TRebound"], "DREB": d["TDefRebound"], "OREB": d["TOffRebound"], "STL": d["TSteal"], "GAMES": d["TGameCount"], } milestone_career_checks = { "PTS": d["CareerTPoints"], "AST": d["CareerTAssist"], "BLK": d["CareerTBlocks"], "REB": d["CareerTRebound"], "DREB": d["CareerTDefRebound"], "OREB": d["CareerTOffRebound"], "STL": d["CareerTSteal"], "GAMES": d["CareerTGameCount"], } for milestone_type, value in milestone_checks.items(): milestone_data = check_milestone( value, milestone_type, d["NameGFX"], d["num"], "season" ) if milestone_data: new_data_season.append(milestone_data) for milestone_type_car, value_car in milestone_career_checks.items(): milestone_data_car = check_milestone( value_car, milestone_type_car, d["NameGFX"], d["num"], "league" ) if milestone_data_car: new_data_career.append(milestone_data_car) return new_data_season, new_data_career columns_game = [ "num", # "roleShort", "NameGFX", "isOn", # "flag", "pts", "pt-2", "pt-3", "pt-1", "fg", "ast", "stl", "blk", "blkVic", "dreb", "oreb", "reb", "to", "foul", "fouled", "plusMinus", "dunk", "kpi", "time", ] # print(cached_team1) if cached_team1 and cached_team2: team1_data = process_team_data(cached_team1, columns_game) team2_data = process_team_data(cached_team2, columns_game) # team1_data["pts"] = pd.to_numeric(team1_data["pts"], errors="coerce") # team2_data["pts"] = pd.to_numeric(team2_data["pts"], errors="coerce") # team1_data["ast"] = pd.to_numeric(team1_data["ast"], errors="coerce") # team2_data["ast"] = pd.to_numeric(team2_data["ast"], errors="coerce") # team1_data["stl"] = pd.to_numeric(team1_data["stl"], errors="coerce") # team2_data["stl"] = pd.to_numeric(team2_data["stl"], errors="coerce") # team1_data["blk"] = pd.to_numeric(team1_data["blk"], errors="coerce") # team2_data["blk"] = pd.to_numeric(team2_data["blk"], errors="coerce") # team1_data["blkVic"] = pd.to_numeric(team1_data["blkVic"], errors="coerce") # team2_data["blkVic"] = pd.to_numeric(team2_data["blkVic"], errors="coerce") # team1_data["dreb"] = pd.to_numeric(team1_data["dreb"], errors="coerce") # team2_data["dreb"] = pd.to_numeric(team2_data["dreb"], errors="coerce") # team1_data["oreb"] = pd.to_numeric(team1_data["oreb"], errors="coerce") # team2_data["oreb"] = pd.to_numeric(team2_data["oreb"], errors="coerce") # team1_data["reb"] = pd.to_numeric(team1_data["reb"], errors="coerce") # team2_data["reb"] = pd.to_numeric(team2_data["reb"], errors="coerce") # team1_data["to"] = pd.to_numeric(team1_data["to"], errors="coerce") # team2_data["to"] = pd.to_numeric(team2_data["to"], errors="coerce") # team1_data["foul"] = pd.to_numeric(team1_data["foul"], errors="coerce") # team2_data["foul"] = pd.to_numeric(team2_data["foul"], errors="coerce") # team1_data["fouled"] = pd.to_numeric(team1_data["fouled"], errors="coerce") # team2_data["fouled"] = pd.to_numeric(team2_data["fouled"], errors="coerce") # team1_data["plusMinus"] = pd.to_numeric(team1_data["plusMinus"], errors="coerce") # team2_data["plusMinus"] = pd.to_numeric(team2_data["plusMinus"], errors="coerce") # team1_data["dunk"] = pd.to_numeric(team1_data["dunk"], errors="coerce") # team2_data["dunk"] = pd.to_numeric(team2_data["dunk"], errors="coerce") # team1_data["kpi"] = pd.to_numeric(team1_data["kpi"], errors="coerce") # team2_data["kpi"] = pd.to_numeric(team2_data["kpi"], errors="coerce") # Стилизация данных team1_styled = ( team1_data.style.apply(highlight_grey, axis=1) .apply(highlight_foul, subset="foul") .apply(highlight_max, subset="pts") ) team2_styled = ( team2_data.style.apply(highlight_grey, axis=1) .apply(highlight_foul, subset="foul") .apply(highlight_max, subset="pts") ) # Вывод данных col_player1, col_player2 = tab_temp_1.columns((5, 5)) event1 = col_player1.dataframe( team1_styled, column_config=config, hide_index=True, height=460, on_select="rerun", selection_mode=[ "single-row", ], ) event2 = col_player2.dataframe( team2_styled, column_config=config, hide_index=True, height=460, on_select="rerun", selection_mode=[ "single-row", ], ) # if event1.selection["rows"]: # player_index = event1.selection["rows"][0] # selected_player_1 = process_player_data(cached_team1, player_index) # col_player1.dataframe( # selected_player_1, # column_config=config_season, # hide_index=True, # ) # if event2.selection["rows"]: # player_index = event2.selection["rows"][0] # selected_player_2 = process_player_data(cached_team2, player_index) # col_player2.dataframe( # selected_player_2, # column_config=config_season, # hide_index=True, # ) if event1.selection and event1.selection.get("rows"): selected_index1 = event1.selection["rows"][0] st.session_state["player1"] = ( selected_index1 # Сохранение состояния в session_state ) if st.session_state["player1"] is not None: selected_player_1, player_data_1 = process_player_data( cached_team1, st.session_state["player1"] ) if player_data_1["num"]: z, a, b, c, d, e = col_player1.columns((1, 6, 1, 1, 1, 1)) z.metric("Номер", player_data_1["num"], border=False) a.metric("Игрок", player_data_1["NameGFX"], border=False) b.metric("Амплуа", player_data_1["roleShort"], border=False) c.metric("Возраст", player_data_1["age"], border=False) d.metric("Рост", player_data_1["height"].split()[0], border=False) e.metric("Вес", player_data_1["weight"].split()[0], border=False) col_player1.dataframe( selected_player_1, column_config=config_season, hide_index=True, ) if event2.selection and event2.selection.get("rows"): selected_index2 = event2.selection["rows"][0] st.session_state["player2"] = ( selected_index2 # Сохранение состояния в session_state ) if st.session_state["player2"] is not None: selected_player_2, player_data_2 = process_player_data( cached_team2, st.session_state["player2"] ) if player_data_2["num"]: z, a, b, c, d, e = col_player2.columns((1, 6, 1, 1, 1, 1)) z.metric("Номер", player_data_2["num"], border=False) a.metric("Игрок", player_data_2["NameGFX"], border=False) b.metric("Амплуа", player_data_2["roleShort"], border=False) c.metric("Возраст", player_data_2["age"], border=False) d.metric("Рост", player_data_2["height"].split()[0], border=False) e.metric("Вес", player_data_2["weight"].split()[0], border=False) col_player2.dataframe( selected_player_2, column_config=config_season, hide_index=True, ) # if event2.selection and event2.selection.get("rows"): # selected_index2 = event2.selection["rows"][0] # st.session_state["player2"] = ( # selected_index2 # Сохранение состояния в session_state # ) # selected_player_2, player_data_2 = process_player_data( # cached_team2, selected_index2 # ) # st.session_state["player2_data"] = selected_player_2 # if st.session_state["player2_data"]: # col_player2.dataframe( # st.session_state["player2_data"], # column_config=config_season, # hide_index=True, # ) # if cached_team_stats: # cached_team_stats_new = [ # cached_team_stats[0], # *cached_team_stats[25:29], # Распаковка элементов среза # cached_team_stats[7], # cached_team_stats[33], # *cached_team_stats[9:11], # Распаковка элементов среза # *cached_team_stats[15:17], # Распаковка элементов среза # ] # tab_temp_2.table( # cached_team_stats_new, # ) if isinstance(cached_team_stats, list) and len(cached_team_stats) >= 34: cached_team_stats_new = [ cached_team_stats[0], *cached_team_stats[25:29], cached_team_stats[7], cached_team_stats[33], *cached_team_stats[9:11], *cached_team_stats[15:17], ] tab_temp_2.table(cached_team_stats_new) if isinstance(cached_referee, (list, pd.DataFrame)): tab_temp_3.dataframe(cached_referee, height=600, column_config={"flag": st.column_config.ImageColumn("flag")}) column_config_ref = { "flag": st.column_config.ImageColumn( "flag", ), } if cached_referee: tab_temp_3.dataframe(cached_referee, height=600, column_config=column_config_ref) def highlight_teams(s): try: if s.iloc[0] in ( cached_game_online["result"]["team1"]["teamId"], cached_game_online["result"]["team2"]["teamId"], ): return ["background-color: #FF4B4B"] * len(s) else: return [""] * len(s) except NameError: return [""] * len(s) # if cached_standings: # df_st = pd.json_normalize(cached_standings) # cached_standings = df_st.style.apply(highlight_teams, axis=1) # tab_temp_4.dataframe( # cached_standings, # column_config={ # "logo": st.column_config.ImageColumn( # "logo", # ), # }, # hide_index=True, # height=610, # ) if cached_standings: df_st = pd.json_normalize(cached_standings) def highlight_teams(s): try: t1 = ((cached_game_online or {}).get("result") or {}).get("team1", {}).get("teamId") t2 = ((cached_game_online or {}).get("result") or {}).get("team2", {}).get("teamId") if s.iloc[0] in (t1, t2): return ["background-color: #FF4B4B"] * len(s) except Exception: pass return [""] * len(s) styled = df_st.style.apply(highlight_teams, axis=1) tab_temp_4.dataframe( styled, column_config={"logo": st.column_config.ImageColumn("logo")}, hide_index=True, height=610, ) # if cached_scores_quarter: # column_config = {} # for quarter in ["Q1", "Q2", "Q3", "Q4", "OT1", "OT2", "OT3", "OT4"]: # column_name = f"score_avg{quarter}" # column_config[column_name] = st.column_config.NumberColumn( # column_name, format="%.1f" # ) # columns_quarters_name = ["Q1", "Q2", "Q3", "Q4"] # columns_quarters_name_ot = ["OT1", "OT2", "OT3", "OT4"] # columns_quarters = tab_temp_5.columns((1, 1, 1, 1)) # for index, col in enumerate(columns_quarters): # df_col = [ # { # "team": cached_scores_quarter[0]["team"], # "W": cached_scores_quarter[0][f"win{columns_quarters_name[index]}"], # "L": cached_scores_quarter[0][f"lose{columns_quarters_name[index]}"], # "D": cached_scores_quarter[0][f"draw{columns_quarters_name[index]}"], # "PTS": cached_scores_quarter[0][f"score{columns_quarters_name[index]}"], # "AVG": cached_scores_quarter[0][ # f"score_avg{columns_quarters_name[index]}" # ], # }, # { # "team": cached_scores_quarter[1]["team"], # "W": cached_scores_quarter[1][f"win{columns_quarters_name[index]}"], # "L": cached_scores_quarter[1][f"lose{columns_quarters_name[index]}"], # "D": cached_scores_quarter[1][f"draw{columns_quarters_name[index]}"], # "PTS": cached_scores_quarter[1][f"score{columns_quarters_name[index]}"], # "AVG": cached_scores_quarter[1][ # f"score_avg{columns_quarters_name[index]}" # ], # }, # ] # col.write(columns_quarters_name[index]) # col.dataframe(df_col) # for index, col in enumerate(columns_quarters): # df_col = [ # { # "team": cached_scores_quarter[0]["team"], # "W": cached_scores_quarter[0][f"win{columns_quarters_name_ot[index]}"], # "L": cached_scores_quarter[0][f"lose{columns_quarters_name_ot[index]}"], # "D": cached_scores_quarter[0][f"draw{columns_quarters_name_ot[index]}"], # "PTS": cached_scores_quarter[0][ # f"score{columns_quarters_name_ot[index]}" # ], # "AVG": cached_scores_quarter[0][ # f"score_avg{columns_quarters_name_ot[index]}" # ], # }, # { # "team": cached_scores_quarter[1]["team"], # "W": cached_scores_quarter[1][f"win{columns_quarters_name_ot[index]}"], # "L": cached_scores_quarter[1][f"lose{columns_quarters_name_ot[index]}"], # "D": cached_scores_quarter[1][f"draw{columns_quarters_name_ot[index]}"], # "PTS": cached_scores_quarter[1][ # f"score{columns_quarters_name_ot[index]}" # ], # "AVG": cached_scores_quarter[1][ # f"score_avg{columns_quarters_name_ot[index]}" # ], # }, # ] # col.write(columns_quarters_name_ot[index]) # col.dataframe(df_col) if isinstance(cached_scores_quarter, list) and len(cached_scores_quarter) >= 2: column_config = {} for quarter in ["Q1", "Q2", "Q3", "Q4", "OT1", "OT2", "OT3", "OT4"]: column_name = f"score_avg{quarter}" column_config[column_name] = st.column_config.NumberColumn(column_name, format="%.1f") columns_quarters_name = ["Q1", "Q2", "Q3", "Q4"] columns_quarters_name_ot = ["OT1", "OT2", "OT3", "OT4"] columns_quarters = tab_temp_5.columns((1, 1, 1, 1)) # Основные четверти for index, col in enumerate(columns_quarters): q = columns_quarters_name[index] df_col = [ { "team": cached_scores_quarter[0].get("team"), "W": cached_scores_quarter[0].get(f"win{q}"), "L": cached_scores_quarter[0].get(f"lose{q}"), "D": cached_scores_quarter[0].get(f"draw{q}"), "PTS": cached_scores_quarter[0].get(f"score{q}"), "AVG": cached_scores_quarter[0].get(f"score_avg{q}"), }, { "team": cached_scores_quarter[1].get("team"), "W": cached_scores_quarter[1].get(f"win{q}"), "L": cached_scores_quarter[1].get(f"lose{q}"), "D": cached_scores_quarter[1].get(f"draw{q}"), "PTS": cached_scores_quarter[1].get(f"score{q}"), "AVG": cached_scores_quarter[1].get(f"score_avg{q}"), }, ] col.write(q) col.dataframe(df_col) # Овертаймы for index, col in enumerate(columns_quarters): q = columns_quarters_name_ot[index] df_col = [ { "team": cached_scores_quarter[0].get("team"), "W": cached_scores_quarter[0].get(f"win{q}"), "L": cached_scores_quarter[0].get(f"lose{q}"), "D": cached_scores_quarter[0].get(f"draw{q}"), "PTS": cached_scores_quarter[0].get(f"score{q}"), "AVG": cached_scores_quarter[0].get(f"score_avg{q}"), }, { "team": cached_scores_quarter[1].get("team"), "W": cached_scores_quarter[1].get(f"win{q}"), "L": cached_scores_quarter[1].get(f"lose{q}"), "D": cached_scores_quarter[1].get(f"draw{q}"), "PTS": cached_scores_quarter[1].get(f"score{q}"), "AVG": cached_scores_quarter[1].get(f"score_avg{q}"), }, ] col.write(q) col.dataframe(df_col) # if cached_play_by_play and isinstance(cached_game_online, dict): # plays = cached_game_online.get("result", {}).get("plays") # if plays: # tab_temp_6.table(cached_play_by_play) if isinstance(cached_play_by_play, list) and isinstance(cached_game_online, dict): plays = (cached_game_online.get("result") or {}).get("plays") or [] if plays: tab_temp_6.table(cached_play_by_play) # print(cached_game_online["result"]["plays"]) # if cached_game_online and cached_game_online["result"]["plays"]: # columns_quarter = tab_temp_7.tabs(count_quarter) # columns_quarter_for_st = [ # "num", # "NameGFX", # "q_pts", # "q_pt2", # "q_pt3", # "q_ft", # "q_pt23", # "q_ast", # "q_stl", # "q_blk", # "q_reb", # "q_to", # "q_f", # "q_f_on", # "q_rnk", # "q_time", # ] # for i in range(period_max): # col_quarter1, col_quarter2 = columns_quarter[i].columns((5, 5)) # key_quarter_team1 = f"team1_{i+1}" # load_data_from_json(key_quarter_team1) # key_quarter_team1 = st.session_state[key_quarter_team1] # # print(key_quarter_team1) # df_team1 = pd.DataFrame(key_quarter_team1) # count_players_1 = len(df_team1) # col_quarter1.dataframe( # df_team1[columns_quarter_for_st].style.apply(highlight_max, subset="q_pts"), # column_config=config, # hide_index=True, # height=38 * count_players_1 if count_players_1 > 10 else None, # ) # key_quarter_team2 = f"team2_{i+1}" # load_data_from_json(key_quarter_team2) # key_quarter_team2 = st.session_state[key_quarter_team2] # df_team2 = pd.DataFrame(key_quarter_team2) # count_players_2 = len(df_team2) # col_quarter2.dataframe( # df_team2[columns_quarter_for_st].style.apply(highlight_max, subset="q_pts"), # column_config=config, # hide_index=True, # height=38 * count_players_2 if count_players_2 > 10 else None, # ) # if cached_team1 and cached_team2: # data_team_season_1, data_team_career_1 = milestones(cached_team1) # data_team_season_2, data_team_career_2 = milestones(cached_team2) # tab7_col1, tab7_col2 = tab_temp_8.columns((5, 5)) # tab7_col1.dataframe(data_team_season_1) # tab7_col2.dataframe(data_team_season_2) # tab7_col1.dataframe(data_team_career_1) # tab7_col2.dataframe(data_team_career_2) def schedule_selected_team(team_id, data, game_id, selected, away_team_id): columns = [ "game.localDate", "team1.name", "team1.logo", "game.score", "team2.logo", "team2.name", "game.fullScore", "win", ] df_schedule_new = data.loc[ # (data["game.id"] < game_id) # & ( (data["team1.teamId"].isin([team_id])) | (data["team2.teamId"].isin([team_id])) ) ] df_schedule_new.loc[:, "game.fullScore"] = df_schedule_new[ "game.fullScore" ].str.split(",") conditions = [ (df_schedule_new["team1.teamId"] == team_id) & (df_schedule_new["game.score1"] > df_schedule_new["game.score2"]), (df_schedule_new["team1.teamId"] == team_id) & (df_schedule_new["game.score1"] < df_schedule_new["game.score2"]), (df_schedule_new["team2.teamId"] == team_id) & (df_schedule_new["game.score2"] > df_schedule_new["game.score1"]), (df_schedule_new["team2.teamId"] == team_id) & (df_schedule_new["game.score2"] < df_schedule_new["game.score1"]), ] values = [True, False, True, False] df_schedule_new = df_schedule_new.copy() df_schedule_new.loc[:, "win"] = np.select(conditions, values, default=None) mask = pd.Series(True, index=df_schedule_new.index) # Проверяем каждое выбранное условие и объединяем с маской if selected: if "Дома" in selected: mask &= df_schedule_new["team1.teamId"] == team_id if "В гостях" in selected: mask &= df_schedule_new["team2.teamId"] == team_id if "Выигрыши" in selected: mask &= df_schedule_new["win"] == True if "Поражения" in selected: mask &= df_schedule_new["win"] == False if "Друг с другом" in selected: mask &= df_schedule_new["team1.teamId"].isin( [away_team_id, team_id] ) & df_schedule_new["team2.teamId"].isin([away_team_id, team_id]) # print(selected) return df_schedule_new[columns].loc[mask] def get_in(d, path, default=None): cur = d for key in path: if not isinstance(cur, dict): return default cur = cur.get(key, default) if cur is default: return default return cur if tab_schedule: if cached_schedule and "items" in cached_schedule: cached_schedule = cached_schedule["items"] pd_schedule = pd.json_normalize(cached_schedule) # team1_id = st.session_state["game_online"]["result"]["team1"]["teamId"] # team1_name = st.session_state["game_online"]["result"]["team1"]["name"] # team2_id = st.session_state["game_online"]["result"]["team2"]["teamId"] # team2_name = st.session_state["game_online"]["result"]["team2"]["name"] # game_id = st.session_state["game_online"]["result"]["game"]["id"] game_online = st.session_state.get("game_online") team1_id = get_in(game_online, ["result", "team1", "teamId"]) team1_name = get_in(game_online, ["result", "team1", "name"]) team2_id = get_in(game_online, ["result", "team2", "teamId"]) team2_name = get_in(game_online, ["result", "team2", "name"]) game_id = get_in(game_online, ["result", "game", "id"]) col1_schedule, col2_schedule = tab_schedule.columns((5, 5)) options = ["Дома", "В гостях", "Выигрыши", "Поражения", "Друг с другом"] selection1 = col1_schedule.segmented_control( "Фильтр", options, selection_mode="multi", key="1" ) selection2 = col2_schedule.segmented_control( "Фильтр", options, selection_mode="multi", key="2" ) team1_data = schedule_selected_team( team1_id, pd_schedule, game_id, selection1, team2_id ) team2_data = schedule_selected_team( team2_id, pd_schedule, game_id, selection2, team1_id ) def highlight_two_teams(s): try: if str(s.loc["team1.name"]) in ( team1_name, team2_name, ) and str(s.loc["team2.name"]) in ( team1_name, team2_name, ): return ["background-color: #FF4B4B"] * len(s) else: return [""] * len(s) except NameError: return [""] * len(s) column_config = { "team1.name": st.column_config.TextColumn("Команда1", width=150), "team2.name": st.column_config.TextColumn("Команда2", width=150), "game.score": st.column_config.TextColumn( "Счёт", ), "game.localDate": st.column_config.TextColumn( "Дата", ), "game.fullScore": st.column_config.Column( "Счёт по четвертям", ), "team1.logo": st.column_config.ImageColumn("Лого1", width=50), "team2.logo": st.column_config.ImageColumn("Лого2", width=50), } count_game_1 = len(team1_data) count_game_2 = len(team2_data) team1_data = team1_data.style.apply(highlight_two_teams, axis=1).apply( color_win, subset="win" ) team2_data = team2_data.style.apply(highlight_two_teams, axis=1).apply( color_win, subset="win" ) height1 = 38 * max(count_game_1, 10) height2 = 38 * max(count_game_2, 10) col1_schedule.dataframe( team1_data, hide_index=True, height=int(min(height1, 1200)), column_config=column_config, ) col2_schedule.dataframe( team2_data, hide_index=True, height=int(min(height2, 1200)), column_config=column_config, ) # with open("PlayTypeID.json", "r", encoding="utf-8") as f: # play_type_id = json.load(f) # # print(play_type_id) # teams_data = cached_game_online["result"]["teams"] # teams_temp = sorted( # teams_data[1]["starts"], key=lambda x: x["playerNumber"], reverse=False # ) + sorted(teams_data[2]["starts"], key=lambda x: x["playerNumber"], reverse=False) # # print(teams_temp) # list_fullname = [None] + [ # f"({x['displayNumber']}) {x['firstName']} {x['lastName']}" # for x in teams_temp # if x["startRole"] == "Player" # ] def get_play_info(play): # Ищем в списке play_type_id элемент, у которого PlayTypeID совпадает с play for item in play_type_id: if item["PlayTypeID"] == play: return item["PlayInfoSite"] return None # Если совпадение не найдено def get_player_name(start_num): # Ищем в списке teams_temp элемент, у которого startNum совпадает с temp_data_pbp["startNum"] for player in teams_temp: if player["startNum"] == start_num: return f"{player['firstName']} {player['lastName']}" return None # Если совпадение не найдено def get_event_time(row): if row != 0: time_str = 6000 - row if time_str == 0: time_str = "0:00" else: time_str = time_str // 10 time_str = f"{time_str // 60}:{str(time_str % 60).zfill(2)}" return time_str # with tab_pbp: # temp_data_pbp = pd.DataFrame(cached_game_online["result"]["plays"]) # col1_pbp, col2_pbp = tab_pbp.columns((3, 4)) # option_player = col1_pbp.selectbox( # "Выбрать игрока", # list_fullname, # ) # options_pbp = ["1 очко", "2 очка", "3 очка"] # selection_pbp = col1_pbp.segmented_control( # "Фильтр", options_pbp, selection_mode="multi", key=3 # ) # if not temp_data_pbp.empty: # options_quarter = [ # (f"{i+1} четверть" if i + 1 < 5 else f"{i-3} овертайм") # for i in range(max(temp_data_pbp["period"])) # ] # selection_quarter = col1_pbp.segmented_control( # "Выбор четверти", options_quarter, selection_mode="multi", key=4 # ) # temp_data_pbp["info"] = temp_data_pbp["play"].map(get_play_info) # temp_data_pbp["who"] = temp_data_pbp["startNum"].map(get_player_name) # temp_data_pbp["time"] = temp_data_pbp["sec"].map(get_event_time) # # Инициализируем маску фильтрации (все строки по умолчанию) # mask1 = pd.Series(True, index=temp_data_pbp.index) # if option_player: # start_number = [ # x["startNum"] # for x in teams_temp # if f"({x['displayNumber']}) {x['firstName']} {x['lastName']}" # == option_player # ][0] # mask1 &= temp_data_pbp["startNum"] == start_number # # Фильтрация по типу очков # if selection_pbp: # plays_mapping = {"1 очко": 1, "2 очка": 2, "3 очка": 3} # selected_plays = [plays_mapping[play] for play in selection_pbp] # mask1 &= temp_data_pbp["play"].isin(selected_plays) # # Фильтрация по четверти # if selection_quarter: # select_quart = [ # index + 1 # for index, quarter in enumerate(options_quarter) # if quarter in selection_quarter # ] # mask1 &= temp_data_pbp["period"].isin(select_quart) # # Применяем маску фильтрации # filtered_data_pbp = temp_data_pbp[mask1] # count_pbp = len(filtered_data_pbp) # column_pbp = [ # "num", # "info", # "who", # "period", # "time", # ] # column_config_pbp = { # "info": st.column_config.TextColumn(width="medium"), # "who": st.column_config.TextColumn(width="large"), # } # col2_pbp.dataframe( # filtered_data_pbp[column_pbp], # column_config=column_config_pbp, # hide_index=True, # height=(38 * count_pbp if count_pbp > 10 else None), # ) # Безопасная загрузка PlayTypeID try: with open("PlayTypeID.json", "r", encoding="utf-8") as f: play_type_id = json.load(f) except (FileNotFoundError, json.JSONDecodeError): play_type_id = [] # Безопасное получение команд и игроков # teams_section = ((cached_game_online or {}).get("result") or {}).get("teams") or {} # starts1 = (teams_section.get(1) or {}).get("starts") or [] # starts2 = (teams_section.get(2) or {}).get("starts") or [] teams_section = ((cached_game_online or {}).get("result") or {}).get("teams") or {} # Если teams_section — список (например, [{"starts": [...]}, {...}]) if isinstance(teams_section, list): if len(teams_section) >= 2: starts1 = (teams_section[0] or {}).get("starts") or [] starts2 = (teams_section[1] or {}).get("starts") or [] elif len(teams_section) == 1: starts1 = (teams_section[0] or {}).get("starts") or [] starts2 = [] else: starts1 = [] starts2 = [] # Если teams_section — словарь (обычно {"1": {...}, "2": {...}}) elif isinstance(teams_section, dict): starts1 = (teams_section.get(1) or teams_section.get("1") or {}).get("starts") or [] starts2 = (teams_section.get(2) or teams_section.get("2") or {}).get("starts") or [] else: starts1 = [] starts2 = [] teams_temp = sorted([x for x in starts1 if isinstance(x, dict)], key=lambda x: x.get("playerNumber", 0)) \ + sorted([x for x in starts2 if isinstance(x, dict)], key=lambda x: x.get("playerNumber", 0)) list_fullname = [None] + [ f"({x.get('displayNumber')}) {x.get('firstName','')} {x.get('lastName','')}".strip() for x in teams_temp if x.get("startRole") == "Player" ] def get_play_info(play): for item in play_type_id: if isinstance(item, dict) and item.get("PlayTypeID") == play: return item.get("PlayInfoSite") return None def get_player_name(start_num): for player in teams_temp: if player.get("startNum") == start_num: return f"{player.get('firstName','')} {player.get('lastName','')}".strip() return None def get_event_time(row): if isinstance(row, (int, float)) and row != 0: time_val = 6000 - int(row) if time_val <= 0: return "0:00" time_val //= 10 return f"{time_val // 60}:{str(time_val % 60).zfill(2)}" return None with tab_pbp: plays = ((cached_game_online or {}).get("result") or {}).get("plays") or [] if plays: temp_data_pbp = pd.DataFrame(plays) col1_pbp, col2_pbp = tab_pbp.columns((3, 4)) option_player = col1_pbp.selectbox("Выбрать игрока", list_fullname) options_pbp = ["1 очко", "2 очка", "3 очка"] selection_pbp = col1_pbp.segmented_control("Фильтр", options_pbp, selection_mode="multi", key=3) if not temp_data_pbp.empty and "period" in temp_data_pbp.columns: options_quarter = [ (f"{i+1} четверть" if i + 1 < 5 else f"{i-3} овертайм") for i in range(int(temp_data_pbp["period"].max())) ] selection_quarter = col1_pbp.segmented_control("Выбор четверти", options_quarter, selection_mode="multi", key=4) temp_data_pbp["info"] = temp_data_pbp["play"].map(get_play_info) temp_data_pbp["who"] = temp_data_pbp["startNum"].map(get_player_name) temp_data_pbp["time"] = temp_data_pbp["sec"].map(get_event_time) mask1 = pd.Series(True, index=temp_data_pbp.index) if option_player: # безопасный поиск startNum for x in teams_temp: display = f"({x.get('displayNumber')}) {x.get('firstName','')} {x.get('lastName','')}".strip() if display == option_player: mask1 &= temp_data_pbp["startNum"] == x.get("startNum") break if selection_pbp: plays_mapping = {"1 очко": 1, "2 очка": 2, "3 очка": 3} selected_plays = [plays_mapping[p] for p in selection_pbp if p in plays_mapping] mask1 &= temp_data_pbp["play"].isin(selected_plays) if selection_quarter: select_quart = [i+1 for i, q in enumerate(options_quarter) if q in selection_quarter] mask1 &= temp_data_pbp["period"].isin(select_quart) filtered_data_pbp = temp_data_pbp[mask1] count_pbp = len(filtered_data_pbp) column_pbp = ["num", "info", "who", "period", "time"] column_config_pbp = { "info": st.column_config.TextColumn(width="medium"), "who": st.column_config.TextColumn(width="large"), } col2_pbp.dataframe( filtered_data_pbp[column_pbp], column_config=column_config_pbp, hide_index=True, height=(38 * count_pbp if count_pbp > 10 else None), ) else: st.info("Данных play-by-play нет.")